
Appendix A

 Distributions Used in Uncertainty Analysis

The Beta distribution

The Beta distribution is one of three distributions associate with a binomial stochastic process. A binomial process
is a random counting system where there are a discrete number of opportunities (trials) of some particular event
happening (successes) and where each trial has the same probability of being a success. This means that each trial
must be independent of every other trial.

There are many systems that closely approximate a binomial process. Random processes like the tossing of a coin
are binomial, since one face of the coin can be defined as being a success and the probability of each coin being a
success remains constant for all tosses. No matter how many “heads” there have been in a row, the probability of a
“tails” for the next toss remains the same (e.g. 50% for a fair coin).

Random sampling from a population may also closely approximate a binomial process, where we are concerned
with determining what proportion of that population has some characteristic of interest. If the population is much
larger than the sample size (a rule of thumb is that the population should be at least 10 times the size of the
sample) then the probability of an individual randomly sampled from the population having the characteristic of
interest remains fairly constant and equivalent to the proportion of the population with that characteristic. So, for
example, if we are interested in the proportion of US citizens that eat meat, we can do a random survey of US
citizens. Providing that our sample is much smaller than the population size, the probability that each consecutive
randomly selected person eats meat remains reasonably constant, though there are actually a finite number of
people who eat meat and there is a finite population too, which means that the probability that the next randomly
samples person eats meat does, in fact, depend on the previous samples.

The example above for meat eaters assumes that we are sampling without replacement: in other words, we would
not survey any person more than once. It also implicitly assumes that there are a fixed number of people who eat
meat in the population and a fixed population size too. This would be a static system with a constant proportion of
meat eaters.

The Beta distribution can be used to model the confidence one has about the probability of success of a binomial
trial p where one has observed n independent trials of which s were successes (27, 47, 73, 92, 93), so that it is said
that p is distributed as a Beta(s+1,n-s+1).

This distribution is the result of applying Bayes’ Theorem with a Uniform(0,1) prior distribution and a binomial
likelihood function. In layman’s terms, Bayes’ Theorem works as follows:

1.  A prior statement of the knowledge of the variable to be modelled is given. In this case, we are saying that the
probability p lies somewhere between zero and one, but we would not like to say that any value within that
range was anymore likely than any other value (hence the Uniform(0,1) prior distribution.

2.  For each allowed value within the prior distribution’s range, we calculate the probability of observing the s
successes we observed from the n trials. This probability is simply the binomial probability:

P s n p C p pn s
s n s( ; , ) ( )= − −1

3.  These binomial probabilities then become the weightings given to each value of p in the prior distribution. By
normalising these weightings we arrive at a posterior (i.e. final answer) distribution.



                                                                                                     

Thus, the posterior distribution f(p) for p is given by the product of the prior distribution density and the likelihood
function:
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where the 1 in the equation is the probability density of the Uniform(0,1) prior distribution, the n s
s n sC p p( )1− −

is the weighting given to the p value (the likelihood function) and the integral in the denominator normalises the
distribution so that the area under the curve equals unity. By omitting the 1, cancelling out the nCs and using
α1=s+1, α2=n-s+1, we arrive at the equation for the Beta(α1, α2)  distribution’s probability density f(x;α1,α2):
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Note that the prior distribution for p is a Uniform(0,1) distribution, shown in Figure A1. The Uniform(0,1) prior
distribution is an uninformed prior, meaning that no subjective opinion or any other information has been involved
in determining the prior. This is logically the most conservative approach one could take where conservatism here
means expressing the maximum degree of uncertainty possible. The selection of an appropriate prior is sometimes
slightly contentious. For example, Beta(0,0) is sometimes suggested as an uninformed prior, though it does not in
theory exist. One criticism for using a Beta(1,1) prior is that the mean of the estimated probability is biased
towards 50%, away from the observed proportion. In fact, for all applications of the Beta distribution in this
analysis, the information contained in the prior distribution is generally overwhelmed by the information contained
in the sample data and the results are essentially equivalent to a more traditional frequentist statistics approach
which would give the confidence distribution for the probability  p as: p̂ = Binomial(n, s/n) / n.  The frequentist

also uses the central limit theorem in situations where a large number n of samples were taken, say n > 30.  By the
central limit theorem p̂  has a Normal distribution Normal(p, √[p(1-p)/n]), where p is the true value of the

probability of success.  One then assumes (i.e. estimates) the confidence distribution for p to be :
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Thus, from a practical viewpoint, there is little difference in using a Bayesian or frequentist approach to
uncertainty estimating in this model, except that the Bayesian approach allows one to combine information from
dissimilar data.

Perhaps the easiest way to understand the Beta distribution used in this manner is to look at a few plots of its shape
for varying values of α1 and α2. Figure A1, the Uniform(0,1) distribution, is also the Beta(1,1), i.e. the Beta
distribution where we have observed s = 0 successes and (n-s) = 0 failures: this is the distribution when we have
not yet done any trials and hence remains the prior distribution.
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Figure A1: The Uniform(0,1) distribution, which is also the Beta(1,1) distribution

Figure A2 show the Beta(1,11)and  the Beta(11,1) distributions: the former where we have observed zero successes
in ten trials and the latter where we have observed ten successes in ten trials. Note that they are simply the
reflection of each other since they essentially represent the same thing: one needs only to reverse the definition of a
success to its opposite. Also note that, since all trials have been a success or a failure, the distributions peak at zero
and one respectively. If this pattern continues with more trials, the distributions will become progressively more
concentrated at zero and one.
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Figure A2: Examples of the Beta distribution where all trials are successes (peak at p=1)
or all are failures (peak at p=0)

Figure A3 shows the Beta(3,3), Beta(11,11) and Beta(21,21) distributions representing four, 20 and 40 trials where
50% have been successes. Note that as the number of trials increases, the distribution becomes progressively
narrower: in other words, one is becoming progressively more confident about what the true value of p must be.
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Figure A3: Examples of the Beta distribution where there are equal successes and failures (i.e. α1=α2)

The figures below show that except for the case with very small n, the Binomial distributions or the Normal
approximations to them that a frequentist would use to model the confidence distributions modelled as Beta
posterior distributions above are practically indistinguishable from the Beta distributions.  The cumulative
probability distributions for the Binomial(4,0.5)/4, the Normal(0.5, 0.25), and the Beta(3,3) which are the ones for
the case n=4, are shown in Figure A4a.  The cumulative distribution for the Binomial is a step function.  Figure
A4b displays the cumulative probability distributions for the case n=20 and Figure A4c, for the case n=40.



                                                                                                     

Figure A4a.  Cumulative probability distributions for p based on the Beta, Binomial and Normal for the case n=4
and the number of observed successes is 2.

Figure A4b.  Cumulative probability distributions for p based on the Beta, Binomial and Normal for the case n=20
and the number of observed successes is 10.
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Figure A4c.  Cumulative probability distributions for p based on the Beta, Binomial and Normal for the case n=40
and the number of observed successes is 20.
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Use of the Gamma distribution to describe the uncertainty about a Poisson mean

Like the binomial probability p, the mean events per period λ is a fundamental property of the stochastic system in
question. It can never be observed and it can never be exactly known. However, we can become progressively more
certain about its value as more data are collected. Bayesian inference again provides us with a means of quantifying
the state of our knowledge as we accumulate data.

Let us assume an uninformed prior π(λ) = 1/ λ . The Poisson likelihood function for observing X events in period t
is given by:
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The posterior distribution density is the product of the prior density and the likelihood function. We can ignore
terms that don’t involve λ, recognising that the distribution will be normalised eventually, and we then get the
posterior distribution:

1)( −−∝ XteXp λλ λ
0>λ

which has the functional form of, and therefore is, a Gamma(X,1/t) distribution where λ is the variable.

The shape of the posterior Gamma distribution becomes progressively less sensitive to the prior distribution as data
is collected. In essence, the sensitivity of the Gamma distribution to the prior amounts to whether (X-1) is
approximately the same as X. So, if X was 100, the difference would be roughly 1% influenced by the prior and
99% influenced by the data. In this model, the information contained in the quantity of data available always
overpowers the prior.

Gamma distributions used in the risk assessment to model the rate of invasive infection, λi which has a
Gamma(43,1) distribution and the rate of enteric infection, λe which has a Gamma(3985,1) distribution. Those
distributions are shown in the following graphs.



                                                                                                     

Figure A5a. The Gamma(43,1) distribution used to model the rate of invasive disease, λi.

Figure A5b. The Gamma(3985,1) distribution used to model the rate of enteric disease, λe.
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As was the case for the Beta distribution, there is a distributional counterpart to the gamma that the frequentist
would apply to this estimation problem.  When X, the number of events in one unit of time (t=1), is distributed

Poisson(λ),the maximum likelihood estimator for λ, λ̂  is the observed value of X.  Then the Poisson(X)
distribution is used as the uncertainty distribution for λ.  The Poisson distribution is the limiting distribution for a
Binomial random variable when n is large and p is very small.  Because of this relationship, the central limit

theorem applies for the Poisson under the same limiting conditions.  By the central limit theorem λ̂ is normal with
mean λ and variance λ, where λ is the true value of the parameter.  This means that the confidence distribution for
λ is estimated as:

),( XXNormal

The three possible choices for the confidence distribution for λ when 43 cases were observed during the year are
shown to demonstrate how similar they are.

Figure A6.  The cumulative distribution functions for Gamma(43,1), Poisson(43), and Normal(43,6.56).
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Analysis of the human health effect of fluoroquinolone resistant Campylobacter

in domestically reared and consumed broilers
Key: data, assumption, calculation, link, model output, section result

Section 1 Nominal observable confirmed cases of campylobacteriosis in US
nUS US population 270,298,524

nFN Catchment site population 20,723,982

o i Observed FoodNet invasive cases of campylobacteriosis 43

oe Observed FoodNet enteric cases of campylobacteriosis 3,985

λi Expected observed invasive disease in catchment 43

λe Expected observed enteric disease in catchment 3,985

N i Nominal observable mean population invasive infections 561

N e Nominal observable mean population enteric infections 51,976

pb Propn enteric infections w bloody diarrhea 46.0%

Enteric Invasive
Non-bloody Bloody

N1 en , N1 eb , N1 i Nominal mean Culture Confirmed Cases reportable to health department 28,077 23,898 561

Section 2 Total nominal expected number of Campylobacter  infections in a year in US
pnm , p bm P(seek care) 12% 26.7% 100%

pnc , p bc P(stool requested and submitted) 19% 55.4% 100%

p t P(lab tests for organism) 94.5% 94.5% 100%

p+ P(culture confirmed given tested) = test Se, assumes Sp=1 75.0% 75.0% 100%

N2 en , N2 eb , N2 i Illness in population 1,702,043 228,040 561

N2T =N2 en +N2 eb +N2 i Total cases (bloody+non-bloody+invasive) 1,930,644       

Section 3
Number of fluoroquinolone resistant infections, from domestically reared and 
consumed chickens

p ca-min Lower bound estimate 48.0%

p ca-max Upper bound estimate 70.0%

p ca Therefore chicken associated 59.0%

Chicken associated cases 1,004,205 134,543 331
pnm , p bm Proportion seeking care 12.2% 26.7% 100%

Number seeking care 122,078 35,878 331
pan , p ab , p ai Proportion treated with antibiotic 47.9% 63.7% 100%

Number treated 58,450 22,854 331
z 39.5%

pFQ Proportion receiving FQ treatment 55.08% 55.08%

Number of chicken related cases treated with FQ 32,195 12,588 182
p rh Proportion of Campylobacter  infections from chicken that are FQ resistant 10.4%

N3 en , N3 eb , N3 i 

Number of fluoroquinolone  resistant infections from chicken seeking care, getting 
fluoroquinolone 3,352 1,311 19

N3T =N3 en +N3 eb+N3 i 

Total number of fluoroquinolone resistant infections from chicken seeking care, 
getting fluoroquinolone 4,682

Section 4
Number of fluoroquinolone-resistant Campylobacter  contaminated chicken 

carcasses consumed annually

p c Total prevalence of Campylobacter 88.1%

p rc

Prevalence of fluoroquinolone resistant Campylobacter  among Campylobacter 
isolates from slaughter plant 11.8%

pp Estimated prevalence of fluoroquinolone-resistant Campylobacter  in broiler carcasses 10.4%

c Consumption of boneless domestically reared chickens in US per head (lbs) 51.40
V c Total consumption of boneless domestically reared chicken in US (lbs) 1.39E+10

V i

Total consumption of boneless domestically reared chicken contaminated at 
slaughter plant with fluoroquinolone resistant Campylobacter  in US (lbs) 1.45E+09
Denominators Value Probability Equated to 1 in:

P1 US citizen 270,298,524 0.0017% 57,737
P2 Person with campylobacteriosis 1,930,644 0.2425% 412
P3 Person with campylobacteriosis seeking care 268,284 1.7450% 57
P4 Person with campylobacteriosis seeking care and prescribed antibiotic 138,364 3.3835% 30



Block 2.  List of the formulae used to produce the model.
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Formulae table
Cell Formula Cell Formula
D12:D13 =RiskGamma(D10,1) D41:E41 =(D24*'Estimates 1'!$I13)+(1-D24)*$E43
D14:D15 =D12*D$8/D$9 E43 =RiskBeta(17,26)
D16 ='Estimates 1'!P16 D44 ='Estimates 1'!J13
D20 =D15*(1-D16) F44 =D44
E20 =D15*D16 D45:E45 =D42*$D44
F20 =D14 D47 ='Estimates 1'!G25
D23 ='Estimates 2'!H13 D48:F48 =$D47*D45
E23 =D15*D16 D49 =SUM(D48:F48)
D24 ='Estimates 2'!H16 D52 =RiskBeta(1144+1,1297-1144+1)
E24 ='Estimates 2'!E16 D53 =RiskBeta(18+1,159-18+1)
D25 =RiskBeta(367846+1,389255-367846+1) D54 =D53*D52
D26 =RiskBeta(12,4) D56 =D55*D8
E25:E26 =D25 D57 =D56*D54
D27:F27 =D20/PRODUCT(D23:D26) D60 =D8
D29 =D27+E27+F27 D61 =D29
D35 =RiskUniform(D33,D34) D62 =SUMPRODUCT(D27:F27,D38:F38)
D36:F36 =D27*$D$35 D63 =SUMPRODUCT(D27:F27,D38:F38,D41:F41)
D38:F38 =D23 E60:E63 =D$49/D60
D39:F39, D42:F42, F45 =D38*D36 F60:F63 =1/E60


